首页 > 医疗资讯/ 正文

专家论坛| 龙琪琛、胡敏:多组学技术在代谢相关脂肪性肝病中的潜在应用: 从分子机制到血清学标志物

来源 2025-10-29 12:09:38 医疗资讯

代谢相关脂肪性肝病(MAFLD),即原非酒精性脂肪性肝病(NAFLD),是一种全球流行的慢性肝病。MAFLD患者可进一步发展纤维化,最终发展为肝硬化乃至肝细胞癌,显著增加全因死亡风险。流行病学数据显示,其全球成人患病率达25%~30%,其中超重与肥胖人群的患病率高达50%~75%。我国NAFLD患病率预计已达30%,已成为当前重大的公共卫生问题。

随着对脂肪性肝病发病机制认知的深入,2020年国际专家小组正式建议使用MAFLD替代NAFLD这一术语,以更准确地反映代谢功能障碍在疾病发生发展中的核心作用。鉴于MAFLD新定义的研究数据仍处于积累阶段,临床实践中多沿用NAFLD。明确这两个概念的异同对肝病的早期发现和预防具有重要意义,因此本文将同时涵盖二者,并在引用时予以明确区分。

由于MAFLD进展具有隐匿性,其诊断目前仍面临重大挑战。肝活检虽为诊断和分期的金标准,但其临床应用受取样误差、侵入性、潜在并发症等限制,难以满足大规模筛查需求。现有无创诊断手段主要包括影像学与血清学检测,但易受操作者经验影响和代谢共病干扰,对轻度脂肪变性敏感性不足且准确性较低。因此,亟需开发新型无创标志物,以提高MAFLD的早期诊断与分期能力。近年来,多组学技术的快速发展为MAFLD生物标志物的发现提供了前所未有的机遇,通过分析宿主基因表达、蛋白质调控、代谢网络及宿主-微生物组互作,可构建更全面的MAFLD分子机制图谱。本文将系统阐述多组学技术在MAFLD早期诊断、风险分层和个体化治疗中的研究进展。

1基因组学在MAFLD/NAFLD中的应用

大量流行病学研究证实,NAFLD具有显著的遗传易感性。前瞻性家系研究发现,NAFLD超重患儿的兄弟姐妹及父母中脂肪肝患病率显著升高;双胞胎研究亦证实,肝脏脂肪变性和纤维化进展存在高度遗传相关性。

GWAS(全基因组关联研究)已鉴定出多种与MAFLD/NAFLD相关的遗传变异类型,其中单核苷酸多态性在NAFLD中较常见且具有重要临床意义。一项纳入9 491例临床病例的研究发现多个与非酒精性脂肪肝(NAFL)和肝硬化相关的序列变异,其中在GPAM和MTARC1基因中检测到具有保护作用的罕见预测功能丧失(pLOF)变异,提示靶向抑制GPAM和MTARC1可能成为NAFL或非酒精性脂肪性肝炎(NASH)的新型治疗策略。同时,单核苷酸多态性变异被认为是NAFLD及其进展的重要危险因素,PNPLA3基因变异是目前发现与NAFLD相关的最强遗传因素,基于PNPLA3的风险评分可对肝硬化进行风险分层。这些发现不仅可深化对NAFLD发病机制的认知,也为精准医疗时代的个体化风险评估和靶向治疗提供了重要依据。

2代谢组学和脂质组学在MAFLD/NAFLD中的应用

代谢组学和脂质组学为MAFLD的发病机制研究和临床诊疗提供了重要工具,通过高分辨质谱等先进分析技术,研究者可系统性解析MAFLD患者体内小分子代谢物的特征性改变,如氨基酸、胆汁酸及脂质代谢途径紊乱。

2.1   氨基酸代谢谱特征性改变在临床诊疗中的应用

研究表明,氨基酸代谢谱改变与NAFLD进展密切相关。芳香族氨基酸(AAA)、支链氨基酸(BCAA)及其代谢物水平的升高被证实是预测NAFLD肝硬化进展的重要指标。代谢组学分析发现,酪氨酸代谢在NAFLD患者中显著紊乱,且血浆酪氨酸水平与肝脂肪变性程度呈正相关;苯丙氨酸、BCAA随NAFLD进展而增加,而谷胱甘肽及其合成相关的氨基酸(谷氨酸、甘氨酸、丝氨酸)水平呈进行性下降,且与纤维化分期显著相关。

在分子机制方面,BCAA可通过激活肝脏mTOR(哺乳动物雷帕霉素靶蛋白)通路抑制脂质诱导的肝自噬,减少肝脏游离脂肪酸转化,进而增强游离脂肪酸介导的脂肪毒性。向CCl4诱导的肝损伤大鼠模型补充牛磺酸,可显著降低肝星状细胞中脂质过氧化氢和转化生长因子-β mRNA水平,通过减轻氧化应激缓解肝纤维化。因此,探究氨基酸代谢谱的特征性改变可为NAFLD的早期诊断和精准治疗提供新的思路。

2.2   胆汁酸代谢紊乱在临床诊疗中的应用

临床研究证实,NAFLD患者存在特征性的胆汁酸代谢失调,且其与疾病活动度及纤维化分期显著相关。其中,甘氨鹅脱氧胆酸-3-硫酸酯、脱氧胆酸、7-酮脱氧胆酸及去氢胆酸的水平升高与纤维化进展密切相关;而猪去氧胆酸在NAFLD患者和动物模型血清中显著降低,且与NAFLD严重程度呈负相关。机制研究表明,猪去氧胆酸可激活过氧化物酶体增殖物激活受体α依赖性脂肪酸氧化通路,改善线粒体功能并减轻氧化应激,在NAFLD中发挥保护作用。

在治疗方面,新型胆汁酸衍生物奥贝胆酸展现出良好的应用前景。奥贝胆酸可有效调节肠道菌群组成(如增加嗜黏蛋白阿克曼菌和双歧杆菌等有益菌丰度),优化宿主胆汁酸池(降低疏水性胆汁酸水平,提高结合型胆汁酸水平),从而缓解NASH患者的纤维化和疾病活动性。这些研究发现不仅进一步阐明了胆汁酸代谢在NAFLD进展中的作用,还为开发基于胆汁酸代谢调控的新型诊断方法和治疗策略提供了重要依据。

2.3   脂质代谢网络重构在临床诊疗中的应用

NAFLD患者表现出复杂的脂质代谢紊乱特征,包括甘油酯类、鞘脂类、脂肪酸、甘油磷脂等,这些异常变化在疾病发生发展中发挥关键作用。肝脂质组学分析显示,随着脂肪变性程度加重,患者肝脏中甘油三酯(TG)和二酰基甘油水平显著升高。二酰基甘油作为TG合成的中间产物,可通过激活蛋白激酶C-ε抑制胰岛素受体激酶活性,直接促进肝脏胰岛素抵抗(IR),而IR是导致MAFLD的重要因素之一。

鞘脂代谢异常是NAFLD的另一重要特征,主要通过增强脂质蓄积和抑制脂质分解参与疾病进展。NASH患者的血浆鞘脂(神经酰胺、二氢神经酰胺等)水平明显升高,肝组织中鞘氨醇含量显著增加,其中血浆超长链二氢神经酰胺和1-脱氧二氢神经酰胺水平的差异可有效区分NASH与脂肪变性。动物实验结果显示,抑制神经酰胺合成可显著改善IR和肝脂肪变性,其机制可能与神经酰胺通过TNF-α介导的氧化应激、炎症反应、细胞凋亡等多种途径促进肝细胞损伤相关。

NAFLD患者肝脏中饱和脂肪酸与多不饱和脂肪酸(PUFA)含量显著增加。研究显示,NAFLD患者血清棕榈酸水平与肝纤维化程度成正相关;ω-3 PUFA具有抗氧化和抗炎特性,膳食中补充C20-22 ω-3 PUFA有助于减轻肝纤维化和肝损伤;ω-6 PUFA可通过促进炎症反应、诱导CD4+T细胞凋亡,加速肝脏疾病进展;适当降低ω-6与ω-3 PUFA比例,则有助于减轻肝脂肪变性和代谢异常。

在甘油磷脂代谢方面,与正常肝组织相比,溶血磷脂酰乙醇胺水平在肝脂肪变性中明显升高,在NASH中则降低,显示出其对两种疾病状态的显著区分能力。类似地,一项多中心研究发现,NAFLD患者肝细胞气球样变分级与血浆溶血磷脂酰乙醇胺和溶血磷脂酰胆碱水平呈显著负相关,表现出一定的保护作用,而与磷脂酰胆碱水平呈正相关。鞘磷脂d18∶1通过特异性抑制巨噬细胞缺氧诱导因子-2α,促进炎症因子分泌,从而加速NASH进展。

基于上述代谢组学与脂质组学方法,揭示了MAFLD/NAFLD多维度代谢紊乱特征与疾病进展的相关性。但目前研究仍存在一定局限性,如多数证据来自动物模型、缺乏不同种族人群数据、动态监测数据不足等,未来需通过更多临床研究加以验证和完善。

3微生物组学在MAFLD/NAFLD中的应用

肠-肝轴作为重要的双向调控系统,通过代谢物、微生物抗原、营养物质及胆汁酸的相互调节维持机体稳态。在病理条件下,肠道屏障完整性受损导致微生物产物易位,这些产物通过Toll样受体等信号传导通路激活免疫细胞,引发炎症级联反应,促进肝纤维化进程。多项研究证实,肠道菌群失调及其继发的菌群代谢物浓度变化与MAFLD/NAFLD发展密切相关。

3.1   肠道菌群失调和益生菌疗法

NAFLD患者存在特征性的肠道菌群失调,其肠道菌群以厚壁菌门和拟杆菌门为主,变形菌门和放线菌门丰度较低。需注意,随着疾病从轻度/中度NAFLD发展为晚期纤维化,变形菌门丰度显著增加,而厚壁菌门丰度相应减少。进一步研究发现,随着NAFLD疾病严重程度增加,具有特定功能的肠道菌群亦发生变化:拟杆菌门、毛螺菌属等脱氧胆酸产生菌显著增多,而瘤胃菌科等对脱氧胆酸敏感的有益菌减少,提示菌群失衡可能通过干扰胆汁酸代谢影响肝功能。宏基因组学技术进一步揭示了NAFLD肝硬化的肠道菌群特征:肝硬化患者肠道中韦荣球菌属、氨基酸球菌属等潜在致病菌丰度显著升高(两者与AAA和BCAA合成密切相关);相反,具有显著抗炎功能的有益菌普氏栖粪杆菌则随NAFLD进展而减少。

益生菌干预在NAFLD治疗中具有潜在的临床价值。基础研究显示,特定益生菌可通过多靶点机制发挥治疗作用。在肝切除术后第3天,嗜黏蛋白阿克曼菌成为优势菌属(占比为30.6%),其丰度与NAFLD小鼠的肝再生率呈正相关;口服嗜黏蛋白阿克曼菌可显著改善肝损伤和脂质积累,其保护机制可能涉及维持肠道屏障完整性和调节三羧酸循环。此外,拟杆菌属和双歧杆菌属可通过胆汁酸修饰与宿主的相互作用,改善NAFLD症状。然而,临床研究结果存在一定异质性。马来西亚一项随机对照试验发现,持续使用6个月的益生菌并未显著改善NAFLD患者的临床结局,但在维持NAFLD患者肠道屏障完整性和调节局部免疫功能方面发挥积极作用。随着高通量测序、生物信息学分析等技术的发展,下一代益生菌逐渐兴起,其强调基于个体微生物组特征的精准干预,成为NAFLD/NASH治疗的潜在新策略。益生菌干预可能在NAFLD管理中具有一定的辅助作用,未来仍需通过更大样本量、更长持续时间和更多益生菌菌株的临床研究,明确益生菌疗法在NAFLD中的实际效用。

3.2   肠道菌群代谢物水平变化在临床诊疗中的应用

肠道菌群代谢物的水平变化在NAFLD发病机制中扮演着重要角色,其作用机制和治疗潜力日益受到关注。与NAFLD发展相关的肠道菌群代谢物主要包括短链脂肪酸(SCFA)、三甲胺和吲哚类物质等,SCFA作为关键的菌群代谢产物,其浓度变化与疾病进展密切相关。研究发现,血清乙酸盐水平降低与MAFLD的发生风险增加相关,而丙酸盐、戊酸盐和α-甲基丁酸盐水平升高与显著纤维化相关。在分子机制方面,SCFA通过多重途径发挥作用:一方面,通过提升肝脏AMP(单磷酸腺苷)与ATP(三磷酸腺苷)比值激活AMPK信号通路,促进脂肪酸β-氧化,减少肝脏新生脂肪生成并增强能量代谢,发挥抗肝脂肪变性作用;另一方面,通过G蛋白偶联受体43/41调控胰高血糖素样肽-1分泌,减轻IR、抑制炎症及氧化应激,改善MAFLD的脂质代谢紊乱。

胆碱作为磷脂合成的关键底物,与肝脏脂质代谢密切相关。特定肠道菌群可将胆碱转化为三甲胺,再经肝脏进一步代谢为具有心血管毒性的氧化三甲胺(TMAO)。临床研究显示,TMAO和胆碱水平升高与NAFLD组织学特征及NASH风险呈显著正相关,高水平TMAO可使NAFLD患者全因死亡率增加1.90~2.55倍。因此,设置TMAO的特定临界值可能有助于实现NAFLD患者的风险分层。

吲哚类物质是色氨酸代谢的重要产物,包括吲哚-3-丙烯酸、吲哚-3-乙酸、吲哚-3-丙酸等。在高脂肪饮食小鼠模型中,吲哚-3-乙酸通过芳烃受体途径减轻巨噬细胞炎症反应及细胞因子介导的肝细胞脂肪生成;吲哚-3-丙酸可改善肠道菌群失调并减轻肠上皮屏障损伤,通过抑制NF-κB信号传导降低促炎细胞因子水平,实现对肝脏的保护作用。

上述研究结果不仅深入解析了肠道菌群及其代谢物与宿主的相互作用在NAFLD中的发病机制,也为开发针对肠-肝轴代谢通路的精准干预策略奠定了理论基础。

4蛋白组学在MAFLD中的应用

4.1   新型蛋白标志物的临床应用

细胞角蛋白18(CK18)作为肝细胞凋亡标志物,在NAFLD无创诊断中具有重要价值。NAFLD患者肝脏脂肪累积激活半胱天冬酶,介导CK18裂解生成M30片段并释放至血液中。与健康个体相比,NAFLD和NAFL患者血清CK18水平显著升高。一项荟萃分析显示,通过受试者操作特征曲线分析,血浆CK18诊断NASH的曲线下面积(AUC)为0.82,灵敏度和特异度分别为0.78和0.87。在临床实践中,虽然CK18已被纳入NAFLD诊疗指南,但其临床应用仍存在诊断准确性不高、缺乏统一临界值的问题。

成纤维细胞生长因子(FGF)21是一种主要在肝脏合成的内分泌因子,可通过多重机制改善代谢紊乱,包括增强AMP激活的蛋白激酶信号促进脂肪酸β氧化,减少肝脏脂肪变性和脂毒性;通过减轻氧化应激和内质网应激,发挥直接抗炎和抗纤维化作用。临床研究证实,FGF21类似物可显著改善纤维化和NAFLD活动度评分,同时展示出较好的有效性和安全性,为NAFLD/NASH的靶向治疗提供新的干预策略。

4.2   蛋白质组学揭示NAFLD潜在特征性蛋白标志物

蛋白质组学研究为NAFLD的发病机制解析和临床诊疗提供重要依据。一项针对48例NAFLD患者的血浆蛋白质组分析显示,多聚免疫球蛋白受体在NAFLD和肝硬化组中显著升高;而二肽基肽酶4、氨基肽酶N、转化生长因子-β诱导蛋白及载脂蛋白E与NAFLD和肝硬化进展密切相关。一项联合蛋白质组学和转录组学的研究发现,整合素样金属蛋白酶与凝血酶2蛋白、血清醛铜还原酶家族1成员B10、补体因子H相关蛋白4、髓系细胞触发受体2这4种蛋白联合临床指标组成的诊断模型可有效识别高危脂肪性肝炎。其中,ADAMTSL2与显著纤维化高度相关,是识别高危NASH的良好生物标志物;而TREM2可对NASH患者进一步分层。这些特征性蛋白变化模式的发现,为疾病预测和风险分层提供了新的工具。

5基于机器学习构建多组学标志物模型在MAFLD/NAFLD精准诊疗中的应用

5.1   单组学标志物的临床诊断效能研究

组学研究联合机器学习算法为MAFLD/NAFLD的无创诊断带来突破性进展。利用随机森林算法鉴定出的17种代谢物组合(含AAA、BCAA、胆汁酸及维生素D代谢物)对NAFLD肝硬化具有显著的检测效能(AUC=0.91);通过非靶向血清代谢组鉴定的10种代谢产物组合(包括8种脂质、牛磺酸和岩藻糖)对晚期纤维化的诊断性能(AUC=0.94)显著优于传统指标FIB-4(AUC=0.78)和NAFLD纤维化评分(AUC=0.84);28种特异性血清TG特征谱不仅可准确区分正常肝脏和NAFLD(AUC=0.90),还能有效鉴别NASH和NAFL(AUC=0.95)。美国一项微生物组学研究发现,19个特征菌种联合临床指标建立的诊断模型在NAFLD肝硬化和验证队列中的AUC分别为0.91和0.95,且在中国和意大利人群中均能保持一致的诊断性能。这些研究成果为开发基于多组学整合的NAFLD精准诊断系统奠定了重要基础。

5.2   利用多组学整合研究解析NAFLD发病机制

多组学整合研究为深入解析NAFLD的发病机制提供了新的见解。通过系统整合基因组学、蛋白质组学、代谢组学及微生物组学等多维度数据,研究人员揭示了NAFLD发生发展的复杂分子网络。在一项单中心随机对照研究中,对21例接受粪菌移植的NAFLD患者进行多组学分析发现,肠道菌群与特定血浆代谢物及肝脏DNA甲基化谱的差异存在显著相关性,证实通过粪菌移植调控肠道菌群可改变NAFLD个体血浆中菌群代谢物的水平和肝脏DNA甲基化谱。另一项动物模型研究构建了由8个关键菌株、14个关键基因和83个关键代谢物组成的网络,探索肠道微生物群、基因和代谢物的相互影响,为全面立体了解NAFLD的生物学机制提供了新的视角。此外,结合多组学数据和影像学技术构建具有多模态信息的疾病评估体系,用于预测患者病情变化、监测治疗效果、调整治疗方案,有望为实现个体化精准诊疗提供可靠工具。

上述系统生物学方法为揭示疾病的分子异质性提供了新的见解,但多组学研究在疾病中的应用仍面临诸多挑战。首先,不同组学平台产生的数据类型和规模存在显著差异,跨组学数据的标准化和归一化处理面临技术难题,对多组学结果的生物学解释提出了较高要求。其次,随机森林、深度学习、神经网络模型等多种机器学习算法各有优劣,研究人员需结合数据类型与研究目的,进行合理的特征选择和模型优化。最后,疾病特异性不足、检测成本较高、分析周期较长等问题,也在一定程度上限制了多组学研究的临床应用。

6小结与展望

多种组学技术的快速发展为MAFLD/NAFLD的精准诊疗提供了新型研究工具,不仅深化了对MAFLD发病机制的认知,更有望应用于MAFLD诊断、分期及疗效监测,在一定程度上弥补影像学、病理学和传统血清标志物的局限性。同时,多组学技术的临床应用仍面临诸多挑战:(1)技术标准化问题。不同检测方法、仪器及实验室间的生物标志物检测结果的一致性较差,需制订统一的标准化检测流程、质量控制体系和结果解读规则,以提高不同医疗机构检测结果的一致性与可靠性。(2)个体异质性的影响。不同研究中患者的年龄、性别、种族、生活方式、合并症等因素均会改变生物标志物水平,影响其在临床应用中的准确性和可重复性。因此,在实验设计和人群纳入阶段,需明确个体特征并控制潜在混杂因素。(3)缺乏大规模队列验证。目前,针对MAFLD/NAFLD的研究均缺乏基于大规模临床队列的验证数据,未来研究中迫切需要根据临床队列的大规模研究数据验证潜在生物标志物的临床效能,以确保其敏感度和特异度。此外,检测成本效益、临床认可度等问题也是多组学标志物在MAFLD临床诊断应用中面临的重要挑战。

全文下载

https://www.lcgdbzz.org/cn/article/doi/10.12449/JCH250904

Tags: 专家论坛| 龙琪琛、胡敏:多组学技术在代谢相关脂肪性肝病中的潜在应用: 从分子机制到血清学标志物  

搜索
网站分类
标签列表